

Year 12 Methods Units 3,4 Test 1 2019

Section 1 Calculator Free Differentiation, Applications of Differentiation, Integration, Applications of Integration

STUDENT'S NAME

DATE: Friday 8th March

TIME: 20 minutes

MARKS: 21

INSTRUCTIONS:

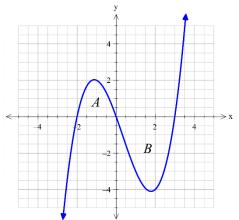
Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

Determine each of the following

(a)
$$\int \frac{2-x^5}{x^3} dx$$

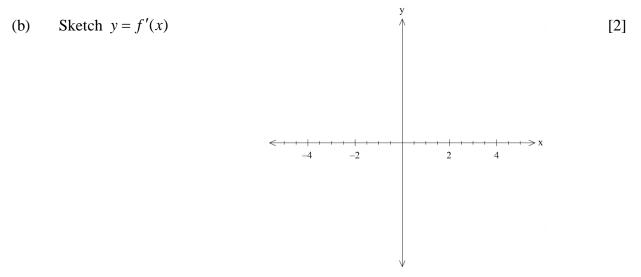

[2]

(b)
$$\int_{1}^{4} (2x+3)dx$$

[2]

2. (9 marks)

Given the graph of y = f(x) below where area A = 7 cm² and area B = 18 cm²


(a) Determine

(i)
$$\int_{-2}^{3} f(x) dx$$
 [1]

(ii)
$$\int_{-2}^{3} |f(x)| dx$$
 [1]

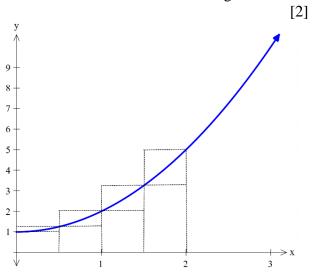
(iii)
$$\int_{-2}^{3} -f(x)dx$$
 [1]

(iv)
$$\int_{-2}^{3} (f(x)+2)dx$$
 [3]

(c) Using your graph, determine when f''(x) < 0

3. (4 marks)

The gradient at any point on a curve is given by $\frac{dy}{dx} = \frac{1}{\sqrt{4-3x}}$. Determine the equation of the curve that passes through the point (-4,3).


4. (4 marks)

Given the function $y = x^2 + 1$

(a) Complete the table below.

0	0.5	1	1.5	2
	1.25		2.25	

(b) Calculate an underestimate of the area under the function for $0 \le x \le 2$ using 4 rectangles.

(c) The overestimate of the area under the function for $0 \le x \le 2$ is 5.25 using 4 rectangles.

Give a more accurate estimate of the area under the function for $0 \le x \le 2$ using 4 rectangles. [1]

Year 12 Methods Units 3,4 Test 1 2019

Section 2 Calculator Assumed Differentiation, Applications of Differentiation, Integration, Applications of Integration

STUDENT'S NAME

DATE: Friday 8th March

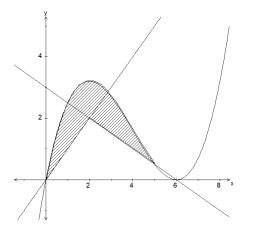
TIME: 30 minutes

MARKS: 32

INSTRUCTIONS:

Standard Items: Special Items:

Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)


Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (4 marks)

Newton's Law of Gravitation states that the force F of attraction between two particles having masses of m_1 and m_2 is given by $F = \frac{m_1 m_2 g}{s^2}$ where g is a constant and s is the distance between the two particles. If $s = 20 \, cm$, use the increments formula to determine the approximate percentage change in s that will increase F by 8%.

6. (6 marks)

A new shape is being proposed for the boomerang throwing event in the 2032 Olympics being held in Perth. The cross-section (shaded) is formed by the intersection of three curves as shown.

The curves have equations $f(x) = 0.1x(x-6)^2$, g(x) = x and h(x) = 3 - 0.5x. The scale used is in cm.

The boomerang is 3 mm thick and is made from a material which has a density of 8 g per cm^3 . Calculate the weight of the boomerang.

7. (4 marks)

The area enclosed by the curves y = mx and $y = x^2$ is 24.813. Determine the value of *m* where m > 0.

8. (10 marks)

A particle travels in a straight line. Its velocity as it passes through a fixed point O is 2 ms⁻¹. The acceleration, *t* seconds after passing O, is given by $a = 6t - 6 \text{ ms}^{-2}$. Calculate

(a)	the velocity after 2 seconds.	[3]
(b)	the maximum displacement for $0 \le t \le 2$.	[3]
(c)	the distance travelled in the first two seconds	[2]
(d)	the average velocity over the first 5 seconds	[2]

9. (8 marks)

A consortium owns apartments. It discovers that if it charges \$400 per week it will rent out 240 apartments. For every \$5 increase in rent it will rent out 2 less apartments.

Determine

- (a) Determine the number of apartments if there is a \$40 increase in rent [1]
- (b) Determine the total rent collected from all apartments if the rental is increased to \$425

[2]

Let x be the number of \$5 increases in the rental amount.

(c) Show clearly the total rental collected from all rented apartments per week will be $R(x) = 96000 + 400x - 10x^{2}$ [3]

(d) Determine the number of apartments the consortium should rent out to maximise revenue and the apartment rental charged [2]